JSP Tutorials

What is JavaServer Pages?

1.

JavaServer Pages (JSP) is a technology for dewgjoyeb pages that support dynamic content which
helps developers insert java code in HTML pagembiting use of special JSP tags, most of which start
with <% and end with %>.

A JavaServer Pages component is a type of Javiestirat is designed to fulfill the role of a user
interface for a Java web application. Web developeite JSPs as text files that combine HTML or
XHTML code, XML elements, and embedded JSP actmiscommands.

Using JSP, you can collect input from users throwgh page forms, present records from a database or
another source, and create web pages dynamically.

JSP tags can be used for a variety of purposels,aguetrieving information from a database or
registering user preferences, accessing JavaBeamsooents, passing control between pages and
sharing information between requests, pages etc.

Why Use JSP?
JavaServer Pages often serve the same purposegaams implemented using the Common Gateway Iterfa
(CGI). But JSP offer several advantages in compangith the CGI.

1.

2.

3.

4.

Performance is significantly better because JSRvalembedding Dynamic Elements in HTML Pages
itself instead of having a separate CGl files.

JSP are always compiled before it's processedégdtver unlike CGl/Perl which requires the setger
load an interpreter and the target script each tiragpage is requested.

JavaServer Pages are built on top of the Javaede®Pl, so like Servlets, JSP also has accedkttea
powerful Enterprise Java APIs, including JDBC, JNBEJIB, JAXP etc.

JSP pages can be used in combination with setWat$iandle the business logic, the model supported
by Java servlet template engines.

Finally, JSP is an integral part of J2EE, a congpfgatform for enterprise class applications. Theans that
JSP can play a part in the simplest applicatioteganost complex and demanding.

Advantages of JSP:

Following is the list of other advantages of usit®P over other technologies:

1.

2.
3.
4.

5

JSP
1.

vs. Active Server Pages (ASP)fhe advantages of JSP are twofold. First, the miyopart is written in
Java, not Visual Basic or other MS specific langya® it is more powerful and easier to use. Seabnd
is portable to other operating systems and non-dduft Web servers.

vs. Pure Servletsit is more convenient to write (and to modify!gtgar HTML than to have plenty of
printin statements that generate the HTML.

vs. Server-Side Includes (SSI)SSI is really only intended for simple inclusionst for “real”

programs that use form data, make database coongcénd the like.

vs. JavaScript: JavaScript can generate HTML dynamically on tientlbut can hardly interact with
the web server to perform complex tasks like datal@cess and image processing etc.

vs. Static HTML: Regular HTML, of course, cannot contain dynamfotimation.

Architecture:

The web server needs a JSP engine ie. contaipeotess JSP pages. The JSP container is responsible
for intercepting requests for JSP pages. Thisitltorakes use of Apache which has built-in JSP
container to support JSP pages development.

A JSP container works with the Web server to prevfte runtime environment and other services a JSP
needs. It knows how to understand the special elentbat are part of JSPs.

Following diagram shows the position of JSP comaand JSP files in a Web Application.

Typical Web server Web
supporting JSP server

== ==

= iy

I | Omda

ISP fMles - Drataba se
stored here | [Web sarver)

JSP Processing:
The following steps explain how the web server ta®the web page using JSP:

1. As with a normal page, your browser sends an HEfaest to the web server.

2. The web server recognizes that the HTTP requést s JSP page and forwards it to a JSP engins. Thi
is done by using the URL or JSP page which ends ygpp instead of .html.

3. The JSP engine loads the JSP page from disk aneitsrit into a servlet content. This conversion is
very simple in which all template text is convertedgrintin() statements and all JSP elements are
converted to Java code that implements the correipg dynamic behavior of the page.

4. The JSP engine compiles the servlet into an exBleutdass and forwards the original request to a
servlet engine.

5. A part of the web server called the servlet en¢paes the Servlet class and executes it. During
execution, the servlet produces an output in HTEHofat, which the servlet engine passes to the web
server inside an HTTP response.

6. The web server forwards the HTTP response to ymwser in terms of static HTML content.

7. Finally web browser handles the dynamically gerset&i TML page inside the HTTP response exactly

as if it were a static page. "
All the above mentioned steps can be shown beld¥ven | it |
following diagram: o] 0 f

+ Translation

(lfent phase

Typically, the JSP engine checks to see whethendes : belaSereto | |
for a JSP file already exists and whether the natibn (1 I O e ‘ :
date on the JSP is older than the servlet. If 82 i3 older é —
than its generated servlet, the JSP container a&sstirat Y dnbihichinb -
the JSP hasn't changed and that the generatedtssii|

matches the JSP's contents. This makes the prnowees

efficient than with other scripting languages (sasHPHP)

and therefore faster.

So in away, a JSP page is really just anothertovayrite j
a servlet without having to be a Java programmiizg Bxcept for the translation phase, a JSP pagaridled
exactly like a regular servlet

JSP Life Cycle:

The key to understanding the low-level functioryatift JSP is to understand the simple life cycle tiodlow.
A JSP life cycle can be defined as the entire p®&@m its creation till the destruction whichsimilar to a
servlet life cycle with an additional step whiclrégjuired to compile a JSP into servlet.

The following are the paths followed by a JSP

Compilation

Initialization

Execution

Cleanup

(emglla

D eaues
e pROCESSING
phase

A

The three major phases of JSP life cycle are \Aﬁlyaﬂ' to e

Servlet Life Cycle and they are as follows: R on Jspinit()

(1) JSP Compilation: Fesuest ffocyca

When a browser asks for a JSP, the JSP enginetiesks Request

to see whether it needs to compile the page. Iptge has ¥

never been compiled, or if the JSP has been mddifice it~ Main ledie | JespServiced

was last compiled, the JSP engine compiles the.page Res';;nse

The compilation process involves three steps: R s i | T e
1. Parsing the JSP. ; PSR s | jspDestroy()] :

2. Turning the JSP into a servlet.
3. Compiling the servlet.

(2) JSP Initialization:
When a container loads a JSP it invokes the jgpimiéthod before servicing any requests. If yourtee
perform JSP-specific initialization, override tis@lnit() method:
public void jsplnit(){
/I Initialization code...

}

Typically initialization is performed only once aad with the servlet init method, you generallyiatize
database connections, open files, and create |otaklgs in the jsplnit method.

(3) JSP Execution:

This phase of the JSP life cycle represents alaations with requests until the JSP is destroyed.
Whenever a browser requests a JSP and the papedmtoaded and initialized, the JSP engine invikes
_jspService()method in the JSP.

The _jspService() method takesHitpServietRequestand arHttpServletResponseas its parameters as
follows:

void _jspService(HttpServletRequest request,
HttpServletResponse response)

/I Service handling code...

}

The _jspService() method of a JSP is invoked orcepequest and is responsible for generatingetdionse
for that request and this method is also respoasislgenerating responses to all seven of the HTi€fhods
ie. GET, POST, DELETE etc.

(4) ISP Cleanup:

The destruction phase of the JSP life cycle reptssghen a JSP is being removed from use by aioenta
ThejspDestroy() method is the JSP equivalent of the destroy mefthvoserviets. Override jspDestroy when
you need to perform any cleanup, such as releasitappase connections or closing open files.

The jspDestroy() method has the following form:

public void jspDestroy()
{

/I ' Your cleanup code goes here.

}

The Scriptlet:

A scriptlet can contain any number of JAVA languatgements, variable or method declarations, or
expressions that are valid in the page scriptinguage.

Following is the syntax of Scriptlet:

<% code fragment %>

You can write XML equivalent of the above syntaXakws:

<jsp:scriptlet>
code fragment
</jsp:scriptlet>

Any text, HTML tags, or JSP elements you write nmhesbutside the scriptlet. Following is the simghel first
example for JSP:

<html>

<head><title>Hello World</title></head>

<body>

Hello World!

<%

out.printin("Your IP address is " + request.getRemo teAddr());
%>

</body>

</html>

NOTE: Assuming that Apache Tomcat is installed in C:#ygatomcat-7.0.2 and your environment is setup as
per environment setup tutorial.

Let us keep above code in JSP file hello.jsp andipsifile in C:\apache-tomcat-7.0.2\webapps\ROOT
directory and try to browse it by giving URL htifiocalhost:8080/hello.jsp. This would generatedafing

result:

& Hello World - Windows Internet Explo

@I{t. ﬂl http:/ focathostE080/ hello jsp

Hello World

Hello World!
Your IP address is 127.0.0.1

JSP Declarations:

A declaration declares one or more variables ohou that you can use in Java code later in thdiESKou
must declare the variable or method before youtusahe JSP file.

Following is the syntax of JSP Declarations:

<%! declaration; [declaration;]+ ... %>

You can write XML equivalent of the above syntaXa@kows:

<jsp:declaration>
code fragment
</jsp:declaration>

Following is the simple example for JSP Comments:

<%! inti =0; %>
<%! int a, b, c; %>
<%! Circle a = new Circle(2.0); %>

JSP Expression:

A JSP expression element contains a scripting @ggexpression that is evaluated, converted taregSand
inserted where the expression appears in the ISP fi

Because the value of an expression is convertadStoing, you can use an expression within a lirtexd,
whether or not it is tagged with HTML, in a JSRfil

The expression element can contain any expredsatnst valid according to the Java Language Spadifin
but you cannot use a semicolon to end an expression

Following is the syntax of JSP Expression:

<%= expression %>

You can write XML equivalent of the above syntaXakows:

<jsp:expression>
expression
</jsp:expression>
Following is the simple example for JSP Expression:

<html>
<head><title>A Comment Test</title></head>
<body>
<p>
Today's date: <%= (new java.util.Date()).toLocal eString()%>
</p>
</body>
</html>

This would generate following result:
Today's date: 11-Sep-2010 21:24:25

JSP Comments:

JSP comment marks text or statements that the @8Rier should ignore. A JSP comment is usefulnayoel
want to hide or "comment out" part of your JSP page

Following is the syntax of JSP comments:

<%-- This is JSP comment --%>

Following is the simple example for JSP Comments:

<html>

<head><title>A Comment Test</title></head>

<body>

<h2>A Test of Comments</h2>

<%-- This comment will not be visible in the page s ource -- %>
</body>

</html>

This would generate following result:
A Test of Comments

There are a small number of special constructscgmuuse in various cases to insert comments oactess
that would otherwise be treated specially. Hersgramary:

Syntax Purpose
<%-- comment --%> A JSP comment. Ignored by the JSP engine.
<!-- comment --> An HTML comment. Ignored by the browser.
<\% Represents static <% literal.
%\> Represents static %> literal.
\' A single quote in an attribute that uses single quotes.
\" A double quote in an attribute that uses double quotes.

JSP Directives:
A JSP directive affects the overall structure @f servlet class. It usually has the following form:

<%@ directive attribute="value" %>

There are three types of directive tag:

Directive

<%@ page ... %>

<%@ include ... %>

<%@ taglib ... %>

Description

Defines page-dependent attributes, such as scripting language, error page, and
buffering requirements.

Includes a file during the translation phase.

Declares a tag library, containing custom actions, used in the page

We would explain JSP directive in separate cha}$ér - Directives

JSP Actions:

JSP actions use constructs in XML syntax to coritrelbehavior of the servlet engine. You can dycattyi
insert a file, reuse JavaBeans components, forth@dser to another page, or generate HTML fodéva

plugin.

There is only one syntax for the Action elementt asnforms to the XML standard:
<jsp:action_name attribute="value" />

Action elements are basically predefined functiand there are following JSP actions available:

Syntax

jsp:include
jsp:include
jsp:useBean
jsp:setProperty
jsp:getProperty

jsp:forward
jsp:plugin
jsp:element
jsp:attribute

jsp:body

jsp:text

Purpose
Includes a file at the time the page is requested
Includes a file at the time the page is requested
Finds or instantiates a JavaBean
Sets the property of a JavaBean
Inserts the property of a JavaBean into the output
Forwards the requester to a new page

Generates browser-specific code that makes an OBJECT or EMBED tag for the Java
plugin

Defines XML elements dynamically.
Defines dynamically defined XML element's attribute.
Defines dynamically defined XML element's body.

Use to write template text in JSP pages and documents.

We would explain JSP actions in separate chaptr J&tions

Control-Flow Statements:
JSP provides full power of Java to be embeded im y@b application. You can use all the APIs anitting
blocks of Java in your JSP programming includingislen making statements, loops etc.
Decision-Making Statements:
Theif...elseblock starts out like an ordinary Scriptlet, b Scriptlet is closed at each line with HTML text
included between Scriptlet tags.
<%! int day = 3; %>
<htmlI>
<head><title>IF...ELSE Example</titte></head>
<body>
<% if (day == 1| day == 7) { %>
<p> Today is weekend</p>
<% } else { %>

<p> Today is not weekend</p>
<% } %>
</body>
</html>

This would produce following result:
Today is not weekend

Now look at the followingswitch...caseblock which has been written a bit differentltyngsout.printin() and
inside Scriptletas:

<%! int day = 3; %>
<html|>
<head><title>SWITCH...CASE Example</title></head>
<body>
<%
switch(day) {
case O:
out.printin("It\'s Sunday.");
break;
case 1:
out.printin("It\'s Monday.");
break;
case 2:
out.printin("It\'s Tuesday.");
break;
case 3:
out.printin("lt\'s Wednesday.");
break;
case 4:
out.printin("It\'s Thursday.");
break;
case 5:
out.printin("It\'s Friday.");
break;
default:
out.printin("lt's Saturday.");
}
%>
</body>
</html>

This would produce following result:
It's Wednesday.

Loop Statements:

You can also use three basic types of looping lslacklavafor, while,and do...while blocks in your JSP
programming.

Let us look at the followinfpr loop example:

<%! int fontSize; %>

<html>

<head><title>FOR LOOP Example</title></head>

<body>

<%for (fontSize = 1; fontSize <= 3; fontSize++){ % >
<font color="green" size="<%-= fontSize %>">
JSP Tutorial
</ffont>

<%}%>

</body>

</html>

Above example can be written usiwgile loop as follows:

<%! int fontSize; %>
<html|>
<head><title>WHILE LOOP Example</title></head>
<body>
<%while (fontSize <= 3){ %>
<font color="green" size="<%-= fontSize %>">
JSP Tutorial

<%fontSize++;%>
<%}%>
</body>
</html>

JSP - Directives

JSP directives provide directions and instructimnthe container, telling it how to handle certagpects of JSP
processing.

A JSP directive affects the overall structure @f servlet class. It usually has the following form:

<%@ directive attribute="value" %>

Directives can have a number of attributes whiah gan list down as key-value pairs and separated by
commas.

The blanks between the @ symbol and the direcéween and between the last attribute and the cl@sing
are optional.

There are three types of directive tag:

Directive Description

Defines page-dependent attributes, such as scripting language, error page, and

0, 0,
<%@ page ... %> buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the page

The page Directive:
Thepagedirective is used to provide instructions to tbatainer that pertain to the current JSP page.nifay
code page directives anywhere in your JSP pageoByention, page directives are coded at the tdpeodSP

page.
Following is the basic syntax of page directive:

<%@ page attribute="value" %>
You can write XML equivalent of the above syntaXa@kows:
<jsp:directive.page attribute="value" />

Attributes:
Following is the list of attributes associated withge directive:

Attribute Purpose
buffer Specifies a buffering model for the output stream.
autoFlush Controls the behavior of the servlet output buffer.
contentType Defines the character encoding scheme.
errorPage Defines the URL of another JSP that reports on Java unchecked runtime exceptions.

isErrorPage Indicates if this JSP page is a URL specified by another JSP page's errorPage

attribute.
extends Specifies a superclass that the generated servlet must extend
import Specifies a list of packages or classes for use in the JSP as the Java import statement
does for Java classes.
info Defines a string that can be accessed with the servlet's getServletinfo() method.
isThreadSafe Defines the threading model for the generated servlet.
language Defines the programming language used in the JSP page.
session Specifies whether or not the JSP page participates in HTTP sessions
isELIgnored Specifies whether or not EL expression within the JSP page will be ignored.
isScriptingEnabled Determines if scripting elements are allowed for use.

Check more detail related to all the above attebuit Page Directive.

The include Directive:

Theinclude directive is used to includes a file during thenslation phase. This directive tells the contaiaer
merge the content of other external files with¢haent JSP during the translation phase. You nodg c
include directives anywhere in your JSP page.

The general usage form of this directive is a®fod:

<%@ include file="relative url" >

The filename in the include directive is actuallgetative URL. If you just specify a filename witlo
associated path, the JSP compiler assumes thiietigein the same directory as your JSP.
You can write XML equivalent of the above syntaXa®ows:

<jsp:directive.include file="relative url" />

Check more detail related to include directiveraiude Directive.

The taglib Directive:

The JavaServer Pages API allows you to define oust®P tags that look like HTML or XML tags and g ta
library is a set of user-defined tags that impleneaistom behavior.

Thetaglib directive declares that your JSP page uses d sastom tags, identifies the location of the lityra
and provides a means for identifying the custors tagyour JSP page.

The taglib directive follows the following syntax:

<%@ taglib uri="uri" prefix="prefixOfTag" >
JSP - Actions

JSP actions use constructs in XML syntax to conbelbehavior of the servlet engine. You can dycattyi
insert a file, reuse JavaBeans components, fortt@dser to another page, or generate HTML fodéva

plugin.
There is only one syntax for the Action elementt asnforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functiand there are following JSP actions available:

Syntax Purpose
jsp:include Includes a file at the time the page is requested
jsp:include Includes a file at the time the page is requested
jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

sp:plugin Gengrates browser-specific code that makes an OBJECT or EMBED tag for the Java
plugin

jsp:element Defines XML elements dynamically.

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

Common Attributes:
There are two attributes that are common to aliokcélements: thal attribute and thecopeattribute.

« Id attribute: The id attribute uniquely identifies the Actiorerlent, and allows the action to be
referenced inside the JSP page. If the Action eseah instance of an object the id value can be tase
reference it through the implicit object PageConhtex

« Scope attribute: This attribute identifies the lifecycle of the Aat element. The id attribute and the
scope attribute are directly related, as the setpdute determines the lifespan of the objecbeissed
with the id. The scope attribute has four possialeies: (a) page, (b)request, (c)session, and (d)
application.

The <jsp:include> Action
This action lets you insert files into the pagenlgegenerated. The syntax looks like this:

<jsp:include page="r elative URL" flush="true" />
Unlike theinclude directive, which inserts the file at the time t1&P page is translated into a servlet, this

action inserts the file at the time the page isiested.
Following is the list of attributes associated withlude action:

Attribute Description
page The relative URL of the page to be included.
The boolean attribute determines whether the included resource has its buffer
flush L
flushed before it is included.
Example:

Let us define following two files (a)date.jps artgj (hain.jsp as follows:
Following is the content of date.jsp file:
<p>

Today's date: <%= (new java.util.Date()).toLocal eString()%>
</p>

Here is the content of main.jsp file:

<html>

<head>

<title>The include Action Example</title>
</head>

<body>

<center>

<h2>The include action Example</h2>
<jsp:include page="date.jsp" flush="true" />
</center>

10

</body>
</html>

Now let us keep all these files in root directongldry to access main.jsp. This would display resomething
like this:

The include action Example
Today's date: 12-Sep-2010 14:54:22

The <jsp:useBean> Action

TheuseBeanaction is quite versatile. It first searches forexisting object utilizing the id and scope valesh
If an object is not found, it then tries to cretite specified object.

The simplest way to load a bean is as follows:

<jsp:useBean id="name" class="package.class" />
Once a bean class is loaded, you cansgssetProperty andjsp:getProperty actions to modify and retrieve

bean properties.
Following is the list of attributes associated wideBean action:

Attribute Description
class Designates the full package name of the bean.
type Specifies the type of the variable that will refer to the object.

Gives the name of the bean as specified by the instantiate () method of the

beanName .
java.beans.Beans class.

Let us discuss abojgp:setProperty andjsp:getProperty actions before giving a valid example related to
these actions.

The <jsp:setProperty> Action

ThesetProperty action sets the properties of a Bean. The Bean Inawg been previously defined before this
action. There are two basic ways to use the se#ifropction:

You can use jsp:setProperty after, but outside ¢gp:useBean element, as below:

<jsp:useBean id="myName" ... />

<jsp:setProperty name="myName" property="someProper ty" .../>

In this case, the jsp:setProperty is executed dégss of whether a new bean was instantiated exesting
bean was found.
A second context in which jsp:setProperty can apjgeaside the body of a jsp:useBean elementgésib

<jsp:useBean id="myName" ... >

<jsp:setProperty name="myName" property="somePro perty" .../>
</jsp:useBean>

Here, the jsp:setProperty is executed only if a nbject was instantiated, not if an existing one ¥eaind.
Following is the list of attributes associated ws#tProperty action:

Attribute Description

Designates the bean whose property will be set. The Bean must have been

name previously defined.

Indicates the property you want to set. A value of "*" means that all request
property parameters whose names match bean property names will be passed to the
appropriate setter methods.

value The value that is to be assigned to the given property. The the parameter's value is

11

null, or the parameter does not exist, the setProperty action is ignored.

The param attribute is the name of the request parameter whose value the
param property is to receive. You can't use both value and param, but it is permissible to
use neither.

The <jsp:getProperty> Action

ThegetProperty action is used to retrieve the value of a givespprty and converts it to a string, and finally
inserts it into the output.

The getProperty action has only two attributeshlmftwhich are required ans simple syntax is as\i:

<jsp:useBean id="myName" ... />

;jsp:getProperty name="myName" property="someProper ty" ...[>
Following is the list of required attributes assted with setProperty action:
Attribute Description

The name of the Bean that has a property to be retrieved. The Bean must have

name been previously defined.
property The property attribute is the name of the Bean property to be retrieved.
Example:

Let us define a test bean which we will use in example:

/* File: TestBean.java */
package action;

public class TestBean {
private String message = "No message specified”;

public String getMessage() {
return(message);

public void setMessage(String message) {
this.message = message;

}
}
Compile above code to generated TestBean.clasarfilanake sure that you copied TestBean.class in
C:\apache-tomcat-7.0.2\webapps\WEB-INF\classesVadétilder and CLASSPATH variable should also be set
to this folder:
Now use the following code in main.jsp file whickatls the bean and sets/gets a simple String paamet
<html>
<head>
<title>Using JavaBeans in JSP</title>
</head>
<body>
<center>
<h2>Using JavaBeans in JSP</h2>

<jsp:useBean id="test" class="action.TestBean" />
<jsp:setProperty name="test"

property="message"

value="Hello JSP..." />

<p>Got message....</p>

<jsp:getProperty name="test" property="message" />

12

</center>
</body>
</html>

Now try to access main.jsp, it would display foliog result:

Using JavaBeans in JSP
Got message....
Hello JSP...

The <jsp:forward> Action

Theforward action terminates the action of the current pagefarwards the request to another resource such
as a static page, another JSP page, or a JavaiServl

The simple syntax of this action is as follows:

<jsp:forward page="Relative URL" />
Following is the list of required attributes assted with forward action:
Attribute Description

Should consist of a relative URL of another resource such as a static page, another

page JSP page, or a Java Servlet.

Example:
Let us reuse following two files (a) date.jps ah@irhain.jsp as follows:
Following is the content of date.jsp file:
<p>

Today's date: <%= (new java.util.Date()).toLocal eString()%>
</p>
Here is the content of main.jsp file:

<html|>

<head>

<title>The include Action Example</title>
</head>

<body>

<center>

<h2>The include action Example</h2>
<jsp:forward page="date.jsp" />
</center>

</body>

</html>

Now let us keep all these files in root directongldry to access main.jsp. This would display resamething
like as below. Here it discarded content from n@age and displayed content from forwarded page only

Today's date: 12-Sep-2010 14:54:22

The <jsp:plugin> Action

Theplugin action is used to insert Java components intdPgpd@e. It determines the type of browser and
inserts the <object> or <embed> tags as needed.

If the needed plugin is not present, it downlodsglugin and then executes the Java componentlatse
component can be either an Applet or a JavaBean.

The plugin action has several attributes that spwad to common HTML tags used to format Java
components. The <param> element can also be ussthtbparameters to the Applet or Bean.

Following is the typical syntax of using plugin iact

<jsp:plugin type="applet" codebase="dirname" code=" MyApplet.class"
width="60" height="80">

13

<jsp:param name="fontcolor" value="red" />
<jsp:param name="background" value="black" />

<jsp:fallback>
Unable to initialize Java Plugin
</jsp:fallback>

</jsp:plugin>

You can try this action using some applet if yoe iaterested. A new element, the <fallback> elepean be
used to specify an error string to be sent to 8& in case the component fails.

1. The <jsp:element> Action

2. The <jsp:attribute> Action

3. The <jsp:body> Action
The <jsp:element>, It;jsp:attribute> and <jsp:bodytions are used to define XML elements dynanyicdlhe
word dynamically is important, because it means tiia XML elements can be generated at requestrather
than statically at compile time.
Following is a simple example to define XML elensdynamically:
<%@page language="java" contentType="text/html"%>

<html xmIns="http://www.w3c.org/1999/xhtm|"
xmins:jsp="http://java.sun.com/JSP/Page">

<head><title>Generate XML Element</title></head>
<body>
<jsp:element name="xml|Element">
<jsp:attribute name="xmlElementAttr'>
Value for the attribute
</jsp:attribute>
<jsp:body>
Body for XML element
</jsp:body>
</jsp:element>
</body>
</html>

This would produce following HTML code at run time:

<html xmIns="http://www.w3c.org/1999/xhtm|"
xmins:jsp="http://java.sun.com/JSP/Page">

<head><title>Generate XML Element</title></head>

<body>

<xmlElement xmlElementAttr="Value for the attribute ">
Body for XML element

</xmlElement>

</body>

</html>

The <jsp:text> Action

The <jsp:text> action can be used to write tempiatéin JSP pages and documents. Following isithele
syntax for this action:

<jsp:text>Template data</jsp:text>

The body fo the template cannot contain other efésné can only contain text and EL expressioN®{e: EL
expressions are explained in subsequent chaptetg.tNat in XML files, you cannot use expressiamshsas

${whatever > 0}, because the greater than signdlagal. Instead, use the gt form, such as ${whategt 0} or
an alternative is to embed the value in a CDATAieac

<jsp:text><![CDATA[
]]></jsp:text>

14

If you need to include a DOCTYPE declaration, fistance for XHTML, you must also use the <jsp:text>
element as follows:

<jsp:text><!/[CDATA[<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict/EN"

"DTD/xhtml1-strict.dtd">]]>

</jsp:text>

<head><title>jsp:text action</title></head>

<body>

<books><book><jsp:text>
Welcome to JSP Programming
</jsp:text></book></books>

</body>
</html>

JSP - Implicit Objects

JSP Implicit Objects are the Java objects thag8fe Container makes available to developers in pagé and
developer can call them directly without being &ifly declared. JSP Implicit Objects are also edlpre-
defined variables.

JSP supports nine Implicit Objects which are lidietbw:

Object Description

request This is thHttpServletReques object associated with the request.

This is theHttpServletRespons: object associated with the response to the
response :

client.
out This is thePrintWriter object used to send output to the client.
session This is thdttpSessior object associated with the request.
application This is th&ervletContexi object associated with application context.
config This is theServletConfig object associated with the page.

This encapsulates use of server-specific featikesilgher performance
pageContext .

JspWriters.

This is simply a synonym fdhis, and is used to call the methods defined by
page

the translated servlet class.

. The Exception object allows the exception data to be accesseatkebignated

Exception

JSP.

The request Object:

The request object is an instance of a javax.detp. HitpServietRequest object. Each time a tlieguests a
page the JSP engine creates a new object to reptaaérequest.

The request object provides methods to get HT TlEdraaformation including form data, cookies, HTTP
methods etc.

We would see complete set of methods associatédreguest object in coming chapter: JSP - CliemjuRst.
The response Object:

The response object is an instance of a javaxetdnttp.HttpServletResponse object. Just as tivesereates
the request object, it also creates an objectpiesent the response to the client.

The response object also defines the interfacésldsd with creating new HTTP headers. Through dbigct
the JSP programmer can add new cookies or date@stdii TP status codes etc.

15

We would see complete set of methods associatédrasponse object in coming chapter: JSP - Server
Response.

The out Object:

The out implicit object is an instance of a javaxvet.jsp.JspWriter object and is used to sendesdnn a
response.

The initial JspWriter object is instantiated diBetly depending on whether the page is bufferatbbr
Buffering can be easily turned off by using theferdd="false" attribute of the page directive.

The JspWriter object contains most of the same odlstlas the java.io.PrintWriter class. However, JsiaV
has some additional methods designed to deal wiileriing. Unlike the PrintWriter object, JspWritigarows
IOExceptions.

Following are the important methods which we wousé to write boolean char, int, double, objectin§tetc.

Method Description
out.print(dataType dt) Print a data type value

Print a data type value then terminate the lind wéw line

out.printin(dataType dt) character

out.flush() Flush the stream.

The session Object:

The session object is an instance of javax.semiptHttpSession and behaves exactly the samelvaady t
session objects behave under Java Servlets.

The session object is used to track client sedsétween client requests. We would see completesusiag
session object in coming chapter: JSP - Sessiarkifg

The application Object:

The application object is direct wrapper aroundSkevietContext object for the generated Servidtiameality
an instance of a javax.servlet.ServletContext dbjec

This object is a representation of the JSP pageititr its entire lifecycle. This object is createlgew the JSP
page is initialized and will be removed when th® p&ge is removed by the jspDestroy() method.

By adding an attribute to application, you can eashat all JSP files that make up your web appboshave
access to it.

You can check a simple use of Application Objeathapter: JSP - Hits Counter

The config Object:

The config object is an instantiation of javax.erervlietConfig and is a direct wrapper arourel th
ServletConfig object for the generated servlet.

This object allows the JSP programmer access t8¢imdet or JSP engine initialization parametechsas the
paths or file locations etc.

The following config method is the only one you htigver use, and its usage is trivial:

config.getServletName();
This returns the servlet name, which is the stcimigtained in the <servlet-name> element defineatienWWEB-
INF\web.xml file

The pageContext Object:
The pageContext object is an instance of a javaretgsp.PageContext object. The pageContext olgacsed
to represent the entire JSP page.

pageContext.removeAttribute("attrName", PAGE_SCOPE)
The page Object:
This object is an actual reference to the instarfi¢be page. It can be thought of as an objectréqaesents the

entire JSP page.
The page object is really a direct synonym forttiie object.

16

The exception Object:
The exception object is a wrapper containing treeption thrown from the previous page. It is typicased
to generate an appropriate response to the ernalitam.

The HttpServletRequest Object:

The request object is an instance of a javax.deiip. HitpServietRequest object. Each time a tliequests a
page the JSP engine creates a hew object to repthaerequest.

The request object provides methods to get HT TEdraaformation including form data, cookies, HTTP
methods etc.

There are following important methods which carubed to read HTTP header in your JSP program. These
method are available witHttpServietRequest object which represents client request to webserve

S.N. Method & Description

Cookie[] getCookies()
Returns an array containing all of the Cookie disj¢iee client sent with this request.

Enumeration getAttributeNames(

2 Returns an Enumeration containing the names ddtthibutes available to this request.
3 Enumeration getHeaderNames()
Returns an enumeration of all the header namesdtjigest contains.
4 Enumeration getParameterNames()
Returns an Enumeration of String objects contaitliegnames of the parameters contained in thisestqu
5 HttpSession getSession()

Returns the current session associated with thises, or if the request does not have a sesgiesites one.

HttpSession getSession(boolean create)
6 Returns the current HttpSession associated wighvégjuest or, if if there is no current sessionaedte is true,
returns a new session.

7 Locale getLocale()
Returns the preferred Locale that the client waltept content in, based on the Accept-Languageehead

8 Object getAttribute(String name)
Returns the value of the named attribute as andDlgenull if no attribute of the given name esist

ServletinputStream getinputStream()
Retrieves the body of the request as binary date @asServletinputStream.

String getAuthType()
10 |Returns the name of the authentication schemetogatect the servlet, for example, "BASIC" or 1S$Sor null
if the JSP was not protected

String getCharacterEncoding(

11 Returns the name of the character encoding uste inody of this request.
12 String getContentType()

Returns the MIME type of the body of the requestul if the type is not known.
13 String getContextPath()

Returns the portion of the request URI that ingisdhe context of the request.
14 String getHeader(String name

Returns the value of the specified request heaglartring.
15 String getMethod()

Returns the name of the HTTP method with which tbégiest was made, for example, GET, POST, or PUT.

17

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

String getParameter(String name)
Returns the value of a request parameter as ayStiimull if the parameter does not exist.

String getPathinfo()
Returns any extra path information associated thighURL the client sent when it made this request.

String getProtocol(]
Returns the name and version of the protocol theest.

String getQueryString()
Returns the query string that is contained in gdwpiest URL after the path.

String getRemoteAddr()
Returns the Internet Protocol (IP) address of liemicthat sent the request.

String getRemoteHost(
Returns the fully qualified name of the client thaht the request.

String getRemoteUser()
Returns the login of the user making this requésie user has been authenticated, or null ifufer has not been
authenticated.

String getRequestURI(
Returns the part of this request's URL from theéqmol name up to the query string in the first laféshe HTTP
request.

String getRequestedSessionlid()
Returns the session ID specified by the client.

String getServletPath(
Returns the part of this request's URL that calisISP.

String[] getParameterValues(String name)
Returns an array of String objects containing fithe values the given request parameter has, |bif the
parameter does not exist.

boolean isSecure
Returns a boolean indicating whether this requastmvade using a secure channel, such as HTTPS.

int getContentLength()
Returns the length, in bytes, of the request bodlyraade available by the input stream, or -1 ifimgth is not
known.

int getintHeader(String name)
Returns the value of the specified request healanant.

int getServerPort()
Returns the port number on which this request wesived.

HTTP Header Request Example:

Following is the example which usgetHeaderNames(method of HttpServiletRequest to read the HTTP
header infromation. This method returns an Enurnmerdhat contains the header information associaidu
the current HTTP request.

Once we have an Enumeration, we can loop down tiuenEration in the standard manner, using
hasMoreElements() method to determine when to stop and usiedgElement() method to get each parameter
name.

<%@ page import="java.io.*,java.util.*" %>
<html>
<head>

18

<title>HTTP Header Request Example</title>
</head>

<body>

<center>

<h2>HTTP Header Request Example</h2>
<table width="100%" border="1" align="center">
<tr bgcolor="#949494">

<th>Header Name</th><th>Header Value(s)</th>

</tr>
<%
Enumeration headerNames = request.getHeaderNames 0;
while(headerNames.hasMoreElements()) {
String paramName = (String)headerNames.nextEl ement();
out.print("<tr><td>" + paramName + "</td>\n") ;
String paramValue = request.getHeader(paramNa me);
out.printin("<td> " + paramValue + "</td></tr >\n");
}
%>
</table>
</center>
</body>
</html>

The HttpServietResponse Object:

The response object is an instance of a javaxeddnttp.HttpServletRequest object. Just as theesereates
the request object, it also creates an objectiesent the response to the client.

The response object also defines the interfacésida with creating new HTTP headers. Through abjgct
the JSP programmer can add new cookies or date@staii TP status codes etc.

There are following methods which can be used t&i3&@ P response header in your servlet programsé&he
method are available witHttpServietResponse object which represents server response.

S.N. Method & Description
String encodeRedirectURL(String url)

1 Encodes the specified URL for use in the sendRedirect method or, if encoding is not needed, returns the URL
unchanged.

String encodeURL(String url)
2 Encodes the specified URL by including the session ID in it, or, if encoding is not needed, returns the URL

unchanged.
3 boolean containsHeader(String name)

Returns a boolean indicating whether the named response header has already been set.
4 boolean isCommitted()

Returns a boolean indicating if the response has been committed.
c void addCookie(Cookie cookie)

Adds the specified cookie to the response.
6 void addDateHeader(String name, long date)

Adds a response header with the given name and date-value.
7 void addHeader(String name, String value)

Adds a response header with the given name and value.
3 void addIntHeader(String name, int value)

Adds a response header with the given name and integer value.

9 void flushBuffer()

19

Forces any content in the buffer to be written to the client.

void reset()

10

Clears any data that exists in the buffer as well as the status code and headers.
11 void resetBuffer()

Clears the content of the underlying buffer in the response without clearing headers or status code.
12 void sendError(int sc)

Sends an error response to the client using the specified status code and clearing the buffer.
13 void sendError(int sc, String msg)

Sends an error response to the client using the specified status.
14 void sendRedirect(String location)

Sends a temporary redirect response to the client using the specified redirect location URL.
15 void setBufferSize(int size)

Sets the preferred buffer size for the body of the response.
16 void setCharacterEncoding(String charset)

Sets the character encoding (MIME charset) of the response being sent to the client, for example, to UTF-8.

void setContentLength(int len)
17 | Sets the length of the content body in the response In HTTP servlets, this method sets the HTTP Content-Length

header.
18 void setContentType(String type)

Sets the content type of the response being sent to the client, if the response has not been committed yet.
19 void setDateHeader(String name, long date)

Sets a response header with the given name and date-value.
20 void setHeader(String name, String value)

Sets a response header with the given name and value.
91 void setintHeader(String name, int value)

Sets a response header with the given name and integer value.

void setLocale(Locale loc)
22 . .

Sets the locale of the response, if the response has not been committed yet.
53 void setStatus(int sc)

Sets the status code for this response.

HTTP Header Response Example:
Following example would ussetintHeader() method to seRefresh header to simulate a digital clock:

<%@ page import="java.io.*java.util.*" %>
<htmlI>
<head>
<title>Auto Refresh Header Example<i/title>
</head>
<body>
<center>
<h2>Auto Refresh Header Example</h2>
<%

/I Set refresh, autoload time as 5 seconds

response.setintHeader("Refresh", 5);

/I Get current time

20

Calendar calendar = new GregorianCalendar();
String am_pm;

int hour = calendar.get(Calendar.HOUR);

int minute = calendar.get(Calendar.MINUTE);
int second = calendar.get(Calendar.SECOND);
if(calendar.get(Calendar.AM_PM) == 0)

am_pm ="AM",
else
am_pm ="PM"
String CT = hour+":"+ minute +";"+ second +" "+ am_pm;

out.printin("Crrent Time: " + CT + "\n");
%>
</center>
</body>
</html>

Auto Refresh Header Example
Current Time is: 9:44:50 PM

Now put the above code in main.jsp and try to axded his would display current system time aéeery 5
seconds as follows. Just run the JSP and waittthgeresult:

Following is a list of HTTP status codes and ass@ted messages that might be returned from the Web
Server:

Code: Message: Description:
100 Only a part of the request has been received bgaheer, but as
Continue long as it has not been rejected, the client shooifidinue with the!

request

101 Switching Protocols The server switches prdtoco

200 OK The request is OK

201 Created The request is complete, and a newnes created

202 Accepted The request is accepted for processing, but theepsing is not
complete.

203 Non-authoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices A Iin_k list. The user can select a link and gohattlocation.
Maximum five addresses

301 Moved Permanently The requested page has ntosedew url

302 Found The requested page has moved tempa@glyew url

303 See Other The requested page can be found anli#éerent url

304 Not Modified

305 Use Proxy

306 Unused This code was used in a previous version. It ifonger used, but

the code is reserved.

307 Temporary Redirect The requested page has ntexgmbrarily to a new url.

21

400
401
402
403
404
405
406

407

408
409
410
411

412

413

414

415

417
500

501

502

503

504
505

Bad Request
Unauthorized
Payment Required
Forbidden

Not Found

Method Not Allowed

Not Acceptable

Proxy Authentication Requirec

Request Timeout
Conflict

Gone

Length Required

Precondition Failed

Request Entity Too Large

Request-url Too Long

Unsupported Media Type
Expectation Failed

Internal Server Error

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

HTTP Version Not Supported

The server did not understancetheest

The requested page needs a usearaia password
You can not use this code yet

Access is forbidden to the requeshe

The server can not find the requegsaee.

The method specified in tbquest is not allowed.

The server can only generate a response that ecoepted by thie
client.

You must authenticate with a proxy server before tbquest can
be served.

The request took longer thasd¢hnver was prepared to wait.
The request could not be completedibse of a conflict.
The requested page is no longer available

The "Content-Length" is not defined. The servet nat accept
the request without it.

The precondition given in the request evaluatedise by the
server.

The server will not accept the request, becausestiigest entity
is too large.

The server will not accept the request, becausarths too long.
Occurs when you convert a "post” request to a "gegfliest with a
long query information.

The server will not accept the request, becausentdtba type is
not supported.

The request was not completed. The server met expected
condition

The request was not completed. The server didupg®t the
functionality required.

The request was not completed. The server receineavalid
response from the upstream server

The request was not completed. The server is teampor
overloading or down.

The gateway has timed out.

The server doesuapport the "http protocol” version

22

JSP - Form Processing

GET method:

The GET method sends the encoded user informapiparaed to the page request. The page and theezhcod
information are separated by the ? character &snfel

http://www.test.com/hello?keyl=valuel&key2=value2

The GET method is the defualt method to pass irdtion from browser to web server and it produckmg
string that appears in your browser's Location:idever use the GET method if you have passwordharo
sensitive information to pass to the server.

The GET method has size limtation: only 1024 chiaraccan be in a request string.

This information is passed using QUERY_STRING heaael will be accessible through QUERY_STRING
environment variable which can be handled usin@getyString() and getParameter() methods of request
object.

POST method:

A generally more reliable method of passing infaiorato a backend program is the POST method.

This method packages the information in exactlystime way as GET methods, but instead of sendasyat
text string after a ? in the URL it sends it agpagate message. This message comes to the barkenam in
the form of the standard input which you can pars# use for your processing.

JSP handles this type of requests using getPargineiethod to read simple parameters and getinprasi()

method to read binary data stream coming from lileatc

Reading Form Data using JSP
JSP handles form data parsing automatically usiaddllowing methods depending on the situation:
« getParameter(): You call request.getParameter() method to getahee of a form parameter.
« getParameterValues():Call this method if the parameter appears mone timee and returns multiple
values, for example checkbox.
« getParameterNames()Call this method if you want a complete list dfgdrameters in the current
request.
getinputStream(): Call this method to read binary data stream corfrioig the client.

GET Method Example Using URL.:

Here is a simple URL which will pass two valuedHelloForm program using GET method.
http://localhost:8080/main.jsp?first_name=ZARA&last name=ALI

Below ismain.jsp JSP program to handle input given by web browakrare going to usgetParameter()
method which makes it very easy to access pasgauhiation:

<htmlI>
<head>
<title>Using GET Method to Read Form Data</title>
</head>
<body>
<center>
<h1>Using GET Method to Read Form Data</h1>

<p>First Name:
<%= request.getParameter("first_name")%>
</p>
<p>Last Name:
<%= request.getParameter("last_name")%>
</p>

</body>
</html>

Now typehttp://localhost: 8080/main.jsp?first_name=ZARA&last_name=ALI in your browser's Location:box.
This would generate following result:

Using GET Method to Read Form Data

23

« First Name: ZARA
+ Last Name ALI

GET Method Example Using Form:
Here is a simple example which passes two valueg #65TML FORM and submit button. We are going te us
same JSP main.jsp to handle this imput.

<html|>

<body>

<form action="main.jsp" method="GET">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />
<input type="submit" value="Submit" />

</form>

</body>

</html>

Keep this HTML in a file Hello.htm and put it in ©mcat-installation-directory>/webapps/ROQOT diregtor
When you would accesstp://localhost:8080/Hello.htm, here is the actual output of the above form.

First Name:‘

Last Name

Try to enter First Name and Last Name and thek slubmit button to see the result on your local mrae
where tomcat is running. Based on the input pralidewill generate similar result as mentionedha above
example.

POST Method Example Using Form:

Let us do little modification in the above JSP &mtle GET as well as POST methods. Belomasn.jsp JSP
program to handle input given by web browser u§itty or POST methods.

Infact there is no change in above JSP becausenayhof passing parameters is changed and no bazdayis
being passed to the JSP program. File handlingecet@oncepts would be explained in separate chajbiere
we need to read binary data stream.

<html|>
<head>
<title>Using GET and POST Method to Read Form Data< [title>
</head>
<body>
<center>
<h1>Using GET Method to Read Form Data</h1>

<p>First Name:
<%= request.getParameter("first_name")%>
</p>
<p>Last Name:
<%= request.getParameter("last_name")%>
</p>

</body>
</html>

Following is the content of Hello.htm file:

<html|>

<body>

<form action="main.jsp" method="POST">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />
<input type="submit" value="Submit" />

</form>

24

</body>
</html>

Now let us keep main.jsp and hello.htm in <Tomaoatallation-directory>/webapps/ROOT directory. When
you would accesBttp://local host: 8080/Hello.htm, below is the actual output of the above form.

First Name:‘

Last Name

Try to enter First and Last Name and then clickigiibutton to see the result on your local machihere
tomcat is running.
Based on the input provided, it would generatelamnesult as mentioned in the above examples.
JSP - Cookies Handling
Cookies are text files stored on the client compatel they are kept for various information tragkpurpose.
JSP transparently supports HTTP cookies using iydgrservlet technology.
There are three steps involved in identifying neilng users:
« Server script sends a set of cookies to the browserexample name, age, or identification number e
« Browser stores this information on local machinefiure use.
« When next time browser sends any request to wefeisdren it sends those cookies information to the
server and server uses that information to idettiéyuser or may be for some other purpose as well.
Servlet Cookies Methods:
« Following is the list of useful methods associatgtth Cookie object which you can use while
manipulating cookies in JSP:

S.N. Method & Description

public void setDomain(String pattern)
This method sets the domain to which cookie apple@sexample tutorialspoint.com.

public String getDomain()
This method gets the domain to which cookie appfasexample tutorialspoint.com.

public void setMaxAge(int expiry)
3 This method sets how much time (in seconds) shelalgse before the cookie expires. If you don't set
this, the cookie will last only for the current sies.

public int getMaxAge()
4 This method returns the maximum age of the coaldecified in seconds, By default, -1 indicating the
cookie will persist until browser shutdown.

public String getName()

S This method returns the name of the cookie. Theenaannot be changed after creation.
6 public void setValue(String newValue)

This method sets the value associated with theieook
7 public String getValue()

This method gets the value associated with theieook

public void setPath(String uri)
8 This method sets the path to which this cookieiapplf you don't specify a path, the cookie isireéd
for all URLs in the same directory as the curreaggas well as all subdirectories.

public String getPath()
This method gets the path to which this cookie iaspl

10 public void setSecure(boolean flag)

25

This method sets the boolean value indicating wdrdtie cookie should only be sent over encrypted
(i.e. SSL) connections.

public void setComment(String purpose)
11 This method specifies a comment that describe®ki€s purpose. The comment is useful if the
browser presents the cookie to the user.

public String getComment()
12 | This method returns the comment describing thequeaf this cookie, or null if the cookie has no
comment.

JSP - Session Tracking

HTTP is a "stateless" protocol which means eack arglient retrieves a Web page, the client opeseparate
connection to the Web server and the server autoatigtdoes not keep any record of previous clreguest.
Still there are following three ways to maintaissen between web client and web server:

(1) CooKkies:

A webserver can assign a unique session ID aslaectmeach web client and for subsequent requeststhe
client they can be recognized using the recievedtieo

This may not be an effective way because many biraeser does nots upport a cookie, so | would not
recommend to use this procedure to maintain themes

(2) Hidden Form Fields:

A web server can send a hidden HTML form field glevith a unique session ID as follows:

<input type="hidden" name="sessionid" value="12345" >

This entry means that, when the form is submittieel specified name and value are automaticallyided in
the GET or POST data. Each time when web browsetsseequest back, then session_id value can beaised
keep the track of different web browsers.

This could be an effective way of keeping trackhef session but clicking on a regular (<A HREF...>)
hypertext link does not result in a form submisssmhidden form fields also cannot support gersgasion
tracking.

(3) URL Rewriting:

You can append some extra data on the end of eRththat identifies the session, and the serveraszociate
that session identifier with data it has storeduaiboat session.

For example, with http://tutorialspoint.com/fileniiisessionid=12345, the session identifier is attdcs
sessionid=12345 which can be accessed at the wedr $e identify the client.

URL rewriting is a better way to maintain sessiand works for the browsers when they don't suppmokies
but here drawback is that you would have generageydJRL dynamically to assign a session ID thopghe
is simple static HTML page.

The session Object:

Apart from the above mentioned three ways, JSP sae of servlet provided HttpSession Interfaceckvhi
provides a way to identify a user across more tranpage request or visit to a Web site and t@ stor
information about that user.

By default, JSPs have session tracking enablecaredv HttpSession object is instantiated for eash client
automatically. Disabling session tracking requigplicitly turning it off by setting the page dita@ session
attribute to false as follows:

<%@ page session="false" %>
The JSP engine exposes the HttpSession objeat &SR author through the implisgssiorobject. Since
sessiorobject is already provided to the JSP programtherprogrammer can immediately begin storing and

retrieving data from the object without any iniizaition or getSession().
Here is a summary of important methods availabieugh session object:

26

S.N.

10

11

Method & Description

public Object getAttribute(String name)
This method returns the object bound with the specified name in this session, or null if no object is bound under
the name.

public Enumeration getAttributeNames()
This method returns an Enumeration of String objects containing the names of all the objects bound to this
session.

public long getCreationTime()
This method returns the time when this session was created, measured in milliseconds since midnight January 1,
1970 GMT.

public String getld()
This method returns a string containing the unique identifier assigned to this session.

public long getLastAccessedTime()
This method returns the last time the client sent a request associated with this session, as the number of
milliseconds since midnight January 1, 1970 GMT.

public int getMaxInactivelnterval()
This method returns the maximum time interval, in seconds, that the servlet container will keep this session open
between client accesses.

public void invalidate()
This method invalidates this session and unbinds any objects bound to it.

public boolean isNew(
This method returns true if the client does not yet know about the session or if the client chooses not to join the
session.

public void removeAttribute(String name)
This method removes the object bound with the specified name from this session.

public void setAttribute(String name, Object value)
This method binds an object to this session, using the name specified.

public void setMaxInactivelnterval(int interval)
This method specifies the time, in seconds, between client requests before the servlet container will invalidate
this session.

27

